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Introduction Method Simulation Conclusion

Phase I oncology trials

The goal of phase I oncology clinical trials is to find the
maximum tolerated dose (MTD) with a target toxicity rate
of φ.
The “3+3" design is the most commonly used design.
Simple but poor performance.
The continual reassessment method (CRM) has good
performance but is more difficult to implement
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Introduction Method Simulation Conclusion

Objectives

To propose a phase I trial design
1 Intuitive −→ easy to understand for both clinicians and

statisticians

2 Simple to implement −→ based on a prespecified rule,
similar to “3+3" design

3 Sound statistical properties −→ for both finite and large
samples

4 Superior operating characteristics −→ comparable or
better than commonly used designs
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Introduction Method Simulation Conclusion

How Phase I trials are conducted in practice?

Start the trial by treating the 1st cohort at the lowest or
pre-specified dose.

Then
Three possible decisions:

1 Escalation

2 Retaining the current dose

3 Deescalation
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Introduction Method Simulation Conclusion

The ideal dose assignment

If we knew the true toxicity probability of the current dose
level j , denote as pj .

We should

escalate the dose if pj < φ.

retain the dose if pj = φ.

deescalate the dose if pj > φ.

Phase I trials can be viewed as a sequence of
decision-making steps of dose assignment for patients
who are sequentially enrolled into the trial
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In the real world

In reality, the dose assignment is more complicated
because pj is unknown
We have to estimate pj based the observed data and make
the decision

For example, the observed toxicity rate p̂j = mj/nj , where
mj is the number of patients experienced toxicity at dose j ,
and nj is the number of patients treated at those j

The decision is often incorrect because of small sample
size and estimation uncertainty

e.g., escalate/deescalate when the current dose is
above/below the MTD
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Motivation

From practical point of view, it is highly desirable to
minimize such incorrect decisions and get as close as
possible to the ideal case, in order to ensure each patient’s
treatment benefit.
This motivates our trial design.

Ying Yuan Bayesian Optimal Interval Design for Phase I Clinical Trials



Introduction Method Simulation Conclusion

The optimal interval design

1 The first cohort are treated at the lowest dose level.
2 At the current dose level j :

if p̂j ≤ λ1j , escalate
if p̂j ≥ λ2j , deescalate
otherwise, i.e., λ1j < p̂j < λ2j , retain

where λ1j ≡ λ1j(nj , φ) and λ2j ≡ λ2j(nj , φ) denote the
prespecified dose escalation and deescalation boundaries.

3 Repeat step 2 until the maximum sample size is reached.
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The optimal interval design

0 1φλ1 j λ2 j
Toxicity*Probability*

deescalate*escalate* retain*

p̂ j

The key issue is how to select the interval boundaries λ1j
and λ2j to minimize the decision error of dose assignment.
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Notations and Setup

Specify three point hypotheses

H0 : pj = φ

H1 : pj = φ1

H2 : pj = φ2,

φ1 is the highest toxicity probability that is deemed
subtherapeutic (i.e., below the MTD) such that dose
escalation should be made
φ2 is the lowest toxicity probability that is deemed overly
toxic such that dose deescalation is required
Example: φ = 0.3, φ1 = 0.2 and φ2 = 0.4
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Correct and incorrect decisions

The correct decisions under H0, H1 and H2 are R, E and
D, respectively, where R, E and D denote dose retainment
(of the current dose level), escalation and deescalation.
The incorrect decisions under H0, H1 and H2 are R̄, Ē and
D̄, where R̄ denotes the decisions complementary to R
(i.e., R̄ includes E and D), and D̄ and R̄ are defined
similarly.
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Remarks on the hypotheses

The purpose of specifying three hypotheses, H0,H1 and
H2, is not to represent the truth and conduct hypothesis
testing.
H1 and H2, or more precisely δ1 = φ1 − φ and δ2 = φ2 − φ,
represent the minimal differences (or effect sizes) of
practical interest to be distinguished from the target toxicity
rate φ (or H0), under which we want to minimize the
average decision error rate for the trial conduct.
This approach is analogous to sample size determination
and power calculation.
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Remarks on the hypotheses

In practice, we should avoid setting φ1 and φ2 at values
very close to φ because of the limited power due to small
sample sizes of phase I trials.

At the significance level of 0.05, we have only 3% power to
distinguish 0.35 from 0.25 with 30 patients.

Based on our experience, φ1 ∈ [0.5φ,0.7φ] and
φ2 ∈ [1.3φ,1.5φ] are reasonable
As default values, we recommend φ1 = 0.6φ and
φ2 = 1.4φ.

e.g., when φ = 0.25, φ1 = 0.15 and φ2 = 0.35.
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Decision error rate

Under the Bayesian paradigm, we assign each of the
hypotheses a prior probability pr(Hk ), k = 0, · · · ,2.
The probability of making an incorrect decision (or decision
error rate) at each of the dose assignments is given by

α ≡ pr(incorrect decision)

= pr(H0)pr(R̄|H0)

+ pr(H1)pr(Ē |H1) + pr(H2)pr(D̄|H2)

= pr(H0)pr(p̂j < λ1j or p̂j > λ2j |H0) + pr(H1)pr(p̂j > λ1j |H1)

+ pr(H2)pr(p̂j < λ2j |H2)

= pr(H0){Bin(njλ1j ; nj , φ) + 1− Bin(njλ2j − 1; nj , φ)}
+ pr(H1){1− Bin(njλ1j ; nj , φ1)}
+ pr(H2)Bin(njλ2j − 1; nj , φ2)
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Optimal interval boundaries

Assuming pr(H0) = pr(H1) = pr(H2) = 1/3, i.e., a priori the
current dose is equally likely to be below, above or equal to
the MTD.
The decision error rate is minimized when

λ1j = log
(

1− φ1

1− φ

)/
log
(
φ(1− φ1)

φ1(1− φ)

)
λ2j = log

(
1− φ
1− φ2

)/
log
(
φ2(1− φ)

φ(1− φ2)

)
.
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Interpretations of λ1j and λ2j

Theorem 1
λ1j is the boundary at which the posterior probability of H1
becomes more likely than that of H0, i.e.,
λ1j = argmaxp̂j

(pr(H1|nj ,mj) > pr(H0|nj ,mj));

λ2j is the boundary at which the posterior probability of H2
becomes more likely than that of H0, i.e.,
λ2j = argminp̂j

(pr(H2|nj ,mj) > pr(H0|nj ,mj)).

This provides intuitive justifications for the proposed dose
escalation/deesclation rule!
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Optimal interval boundaries

The dose escalation/deescalation boundaries are
independent of nj and j (when the noninformative prior is
used) !!

λ1j = log
(

1− φ1

1− φ

)/
log
(
φ(1− φ1)

φ1(1− φ)

)
λ2j = log

(
1− φ
1− φ2

)/
log
(
φ2(1− φ)

φ(1− φ2)

)
.

Very appealing in practice because the same set of
boundaries can be used throughout of the trial, no matter
how many patients have been treated thus far and which
level the current dose is.
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Optimal interval boundaries

Table : The values of λ1j and λ2j under the optimal interval design for
different target toxicity rates .

Interval Target toxicity rate φ
boundaries 0.15 0.2 0.25 0.3 0.35 0.4

λ1j 0.118 0.157 0.197 0.236 0.276 0.316
λ2j 0.179 0.238 0.298 0.358 0.419 0.479
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Optimal interval boundaries
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Finite-sample property: coherence

Theorem 2
The proposed optimal interval design is (long-memory)
coherent in the sense that the probability of dose escalation (or
deescalation) is zero when the observed toxicity rate p̂j at the
current dose is higher (or lower) than the target toxicity rate φ.
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Large-sample property: convergence

Theorem 3
Dose allocation in the optimal interval design converges
almost surely to dose level j∗ if pj∗ ∈ (λ1, λ2) and dose
level j∗ is the only dose satisfying pj∗ ∈ [λ1, λ2].
If no dose level satisfies pj ∈ (λ1, λ2) but φ ∈ [p1,pJ ], the
optimal interval design would eventually oscillate almost
surely between the two dose levels at which the associated
toxicity probabilities straddle the target interval.
If there are multiple dose levels satisfying pj ∈ (λ1, λ2), the
optimal interval design will converge almost surely to one
of these levels.
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Selection of the MTD

At the end of the trial, based on all observed data, we
select as the MTD dose j∗, whose isotonic estimate of
toxicity rate p̃j∗ is closest to φ;
If there are ties for p̃j∗ , we select from the ties the highest
dose level when p̃j∗ < φ and the lowest dose level when
p̃j∗ > φ.
Under the proposed optimal dose assignment, we tend to
treat patients at (or close to) the MTD, thus the design
leads to a high probability of selecting the MTD because
most data and statistical power are concentrated around
the MTD.
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Safety stopping

For patient safety, we impose the following dose elimination
rule when implementing the optimal interval design.

If pr(pj > φ|mj ,nj) > 0.95 and nj ≥ 3, dose levels j and

higher are eliminated from the trial, and the trial is terminated

if the first dose level is eliminated,

where pr(pj > φ|mj ,nj) can be evaluated based on a
beta-binomial model.
The dose elimination boundaries can be tabulated before
the initiation of the trial.
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Simulation study

We considered six dose levels with the target toxicity
probability φ = 0.25,
The maximum sample size was 12 cohorts, with a cohort
size of 3
Set φ1 = 0.15 and φ2 = 0.35
Compared the proposed designs with the “3+3” design, the
CRM, the modified toxicity probability interval (mTPI)
design (Ji, et al., 2010).
We simulated 10,000 trials.
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mTPI design
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Simulation study

For each simulated trial, the toxicity scenario (i.e, the true
toxicity probabilities of the six doses) was randomly
generated.

1 randomly select, with equal probabilities, one of the six
dose levels, say j , as the MTD

2 generate the toxicity probability of the MTD pj
3 generate pj−1 and pj+1 (i.e., the toxicity probabilities of two

doses adjacent to the MTD) under the constraint that pj is
closest to φ.

4 successively generate the toxicity probabilities for the
remaining levels
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Simulation study
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Figure : Ten randomly generated dose-toxicity curves
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Simulation results

Table : Simulation results when the average probability difference
around the target = 0.1

Selection % % of patients % of Average % of toxicty
Design of MTD at MTD nMTD < n/J toxicty rate rate > φ2
3+3 27.9 27.1 33.0 22.0 7.8
mTPI 45.0 35.4 40.9 21.3 5.2
CRM 43.3 34.0 44.3 20.8 5.4
Optimal 45.0 32.4 29.9 20.6 4.7
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Simulation results

Table : Simulation results when the average probability difference
around the target = 0.07

Selection % % of patients % of Average % of toxicty
Design of MTD at MTD nMTD < n/J toxicty rate rate > φ2
3+3 23.3 24.5 41.0 23.8 10.4
mTPI 36.7 29.4 50.0 21.4 5.5
CRM 34.5 28.8 54.3 21.0 5.8
Optimal 37.3 28.6 38.1 20.9 5.4
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Simulation results

Table : Simulation results when the average probability difference
around the target = 0.15

Selection % % of patients % of Average % of toxicty
Design of MTD at MTD nMTD < n/J toxicty rate rate > φ2
3+3 35.6 31.0 21.4 20.3 6.7
mTPI 56.9 44.0 27.1 21.1 4.7
CRM 59.6 44.3 27.4 20.7 4.6
Optimal 58.3 39.4 17.9 20.0 4.2
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Simulation results

The “3+3" design had the worst performance
Compared to the CRM and mTPI, the optimal design
yielded comparable results for the “average" measures.
In terms of the measures of “bad" runs, the optimal design
performed substantially better than the CRM and mTPI.

From an implementation point of view, such an
improvement is of great practical importance because we
rarely run a trial more than a few times.
What really concerns us is the likelihood of the current trial
being a “bad" trial, not the trial designs average
performance over thousands of runs, such as in a
simulation study.
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Software

We have prepared easy-to-use software (with detailed
tutorial) to implement the proposed design.
Three R functions

get.boundary(· · ·); This function is used to generate
escalation and deescalation boundaries for the optimal
interval design;

dose.select(· · ·); This function is used to select the
MTD at the end of the trial based on isotonically
transformed estimates;
get.oc(· · ·); This function is used to generate operating
characteristics for the proposed trial designs.
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Software

The software is available for downloading at
http://odin.mdacc.tmc.edu/~yyuan/index_
code.html,
or MD Anderson Biostatistics software download website
https://biostatistics.mdanderson.org/
SoftwareDownload/

Ying Yuan Bayesian Optimal Interval Design for Phase I Clinical Trials
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Illustration

Using the software to design a phase I trial
Assume six dose level, target φ = 0.3
The maximum sample size of 10 cohorts of size 3
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The optimal interval design

1 The first cohort are treated at the lowest dose level.
2 At the current dose level j , conduct dose

escalation/deescalation as follows:

Number of patients treated at the current dose (nj )
Boundary 3 6 9 12 15 18 21 24 27 30
Escalate if # of DLT <= 0 1 2 2 3 4 5 5 6 7
Deescalate if # of DLT >= 2 3 4 5 6 7 8 9 10 11
Eliminate if # of DLT >= 3 4 5 7 8 9 10 11 12 14

This table is all the clinician needs to run the trial!
The trial conduct does not need any software support
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The optimal interval design

1 The proposed design allows the cohort size to vary from
one cohort to another.

2 Enumerate all possible boundaries

Number of patients treated at the current dose (nj )
Boundary 1 2 3 4 5 6 7 8 9 10
Escalate if # of DLT <= 0 0 0 0 1 1 1 1 2 2
Deescalate if # of DLT >= 1 1 2 2 2 3 3 3 4 4
Eliminate if # of DLT >= NA NA 3 3 4 4 5 5 5 6

Number of patients treated at the current dose (nj )
Boundary 11 12 13 14 15 16 17 18 19 20
Escalate if # of DLT <= 2 2 3 3 3 3 4 4 4 4
Deescalate if # of DLT >= 4 5 5 6 6 6 7 7 7 8
Eliminate if # of DLT >= 6 7 7 8 8 8 9 9 9 10

So the decision can be made at any time of the trial!
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Discussion

Does the proposed design lose substantial information?

All data are used for select the MTD
Only data at the current dose are used to determine dose
assignment, but the sequential dose-escalation procedure
implicitly accounts for the majority of information from other
doses!
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Discussion

Dose level

1 2 3 4 5
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Discussion

The proposed decision-making framework is very flexible
Partition the decision error

α ≡ pr(incorrect decision)

= pr(H0)pr(R̄|H0)︸ ︷︷ ︸
a

+ pr(H1)pr(Ē |H1)︸ ︷︷ ︸
b

+ pr(H2)pr(D̄|H2)︸ ︷︷ ︸
c

A minimax design that minimizes the maximum of these
three types of errors.
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Discussion

We can also classify the decision error into errors of
making incorrect decisions of escalation, deescalation and
dose level retainment

pr(incorrect decision)

= pr(H0){pr(E|H0) + pr(D|H0)}+ pr(H1){pr(R|H1) + pr(D|H1)}
+pr(H2){pr(R|H2) + pr(E|H2)}

Assign the appropriate weight to each type of error to
reflect its relative importance, and minimize the weighted
decision error rate

Penalize more for incorrect dose escalations
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Global optimal interval design

Use three composite hypotheses to define decision errors

H0 : φ1 < pj < φ2

H1 : 0 ≤ pj ≤ φ1

H2 : φ2 ≤ pj ≤ 1,

Then, the average decision error rate is given by

pr(incorrect decision)

= pr(H0)

∫
π(pj |H0)pr(R̄|pj ,H0) dpj + pr(H1)

∫
π(pj |H1)pr(Ē |pj ,H1) dpj

+pr(H2)

∫
π(pj |H2)pr(D̄|pj ,H2) dpj

In our paper, we call the resulting design as the global
optimal interval design and the design based on three
point hypotheses as the local optimal interval design.
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Thank you !
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